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FLOW DISTRIBUTION IN PERFORATED CHANNELS 

WITH A PEP@{ABLE END FACE 

A. S. Nazarov, V. V. Dil'man, 
and S. P. Sergeev 

UDC 532.545 

The distribution of average velocity vs distance along a channel is given by a 
one-dimensional model based on the energy equation. An estimate is given of the 
suitability of the model in the presence of a developed turbulent velocity pro- 
file at the channel entrance. 

An energy principle has previously been used to describe the average flow velocity dis- 
tribution along the length of a channel with perforated walls [i, 2]. In a one-dimensional 
model, the differential equation describing the average parallel velocity distribution along 
the length of a perforated channel takes the form [2] 

where 

W"W' q- aW'W + bW 2 = O, 

(}) 
The s o l u t i o n  u n d e r  t h e  b o u n d a r y  c o n d i t i o n s  

X = O ,  W = I ;  X = I , W = O  

i s  g i v e n  i n  [1]  and  c o r r e s p o n d s  t o  t h e  c a s e  o f  a s e a l e d  end  c h a n n e l .  

If the end face is not sealed but has many perforations and is permeable to liquid or 
gas, the boundary conditions will be as follows: 

X = O ,  W =  1; X =  1, W = W T .  

The s o l u t i o n  o f  (1) w i t h  t h e  b o u n d a r y  c o n d i t i o n s  (3)  may be  p r e s e n t e d  i n  p a r a m e t r i c  
f o r m  as  a s y s t e m  o f  t h r e e  e q u a t i o n s  [3]  

(i) 

(2) 

(3) 

In IF = 1]X § - - ~  in Oo -I- 0o~ + + a -6 - -  arcfg arctg  ~ ,. 
0 ~ -+- 01] -t- 1]a 4- a 2m 2m 2 m  

-- 1] " 02 -~- Oo~ ] -}- -~- a 31] 2 + 2a 20o -+- q 20 A- 1] 
1] In arctg . --arctg-- , (4) 

X = - -  2 (31] z + a) -0o 1]i, O z -t- 04 q- 1]z + a + 2m (3~1 z -+- a) 2m 2m , 

_ 
2 (31] 2 + a) Oo - -  ,1 e~ + 0,1] -v 1] + a  ] q- arctg  arctg  , 
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Fig.  l .  D i s t r i b u t i o n  of  average p a r a l l e l  v e l o c i t y  
along the length of a perforated channel with a perme- 
able end face (9~=0.08), curve c, andwith a sealed end 
face, curve b. Curves 1-3 have a developed turbulent 
velocity profile at the entrance, whereas curves 4-6 
are for a laminar flow. a: i, 4) W T=0.05; 2, 5) 0.2; 
3, 6) 0.5; b: I, 4)W=0.04; 2, 5) 0.08; 3, 6) 0.15. 

where q is the real root of the cubic 8 s +~8 +b =0, and m = (3/4q 2 +a) I/2. 

The parameter s =W'/W varies along the channel from Oo at the entrance to the perfor- 
ated channel to 0 T at the permeable end face. 

It is necessary to determine 0T in order to solve the system of equations (4). 

Consider Fig. la and the channel cross section immediately at the permeable end face 
(X = I). At this section the static pressure may be considered independent of radius and 
equals PIX=I. Analysis shows that the error introduced into the determination of P is less 
than 1%. The gas velocity in the perforations of the end face equals UT/WT. The equation 
for the gas efflux through the face into the external medium we will write in the form 

--2 
P Ix=i - -  Pa G u~ 

- 2 (5) 
9 qo~ 2 

For the same cross section, the condition of gas efflux through the side walls of the per- 
forated channels is determined by the following relation: 

2 
P [x=l --Pa V01X=i 

- -  ~ - -  ( 6 )  : p 2 

It follows from (5) and (6) that 

(7) 

Accord ing to [ 4 ] ,  the drag c o e f f i c i e n t  r e f e r r e d  to the gas v e l o c i t y  in  the holes may 
be expressed through the amount o f  open area 

Then Eq. (7) using (8) takes the form 

Vo Ix=l 1 

tt T q)T l - - q ) +  "--~-- V i  --~p 

(8) 

(9) 
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Fig. 2. Pressure distribution along the length of a per- 
forated channel with a dead end. In curves 1-3 there is a 
developed turbulent velocity profile but in curves 4-6 the 
flow is laminar. The parameter ~ has the values 0.04 in 
curves i, 4; 0.08 in 2, 5; and 0.15 in 3, 6. 

Fig. 3. The change in the velocity correction in a per- 
forated channel: 1-4) ~ =0.04; 5-8) 0.08; 9-13) 0.15; i, 
5, 9) ~T=0; i0) 0.05; 2, 6, ii) 0.i; 3, 7, 12) 0.2; 4, 
8, 13) 0.5. 

+ 
From the flux conservation equation div V = 0 at the cross section X = I, we can write 

in dimensionless form 

R u~ (io) 
V~ 25 L (W')~. 

Substituting (i0) into (9) and taking into consideration that ~T =WT~o, we obtain an 
equation for the desired quantity at the permeable end face of the channel 

0T (Wt)T - 2~L ( 1 -  % + - - ~  V-1 --]-~7.r) (ii) 

The experimental data were taken with a cylindrical perforated channel with an inside 
diameter of 0.106 m and a length of 1.0 m. The open area of the side wall was made with 
5-mm-diameter holes and had the values ~ =0.04, 0.08, and 0.15. The channel end face was 
covered either by a solid plate (~T = 0) or by one of a set of plates with 4-mm-diameter holes 
and open areas ~T=0.05, 0.i, 0.2, or 0.5. 

In order to more accurately satisfy the assumption of the one-dimensional model, one 
must ensure a laminar longitudinal velocity profile at the entrance to the perforated chan- 
nel. Such a profile was established with two grids attached to the entrance of the experi- 
mental region. The longitudinal velocity profiles at various cross sections along the 
length of the perforated channel were measured with pneumatic tubes which we moved radially 
in the range 0 < r/R < 0.99. Experiments showed that the laminar velocity profile was main- 
tained almost constant up to the end face of the channel. 

It is interesting to estimate the degree to which a one-dimensional model may describe 
the distribution of a two-dimensional gas flow in a channel with porous walls. For this we 
applied a flow with a fully developed turbulent velocity profile to the entrance of the per- 
forated channel. Hydrodynamic stabilization of the flow was ensured with a section of tube 
40 diameters long. All experiments were conducted with a Reynolds number at the entrance to 
the experimental region of Reo = 1.4 • 103 . The average flow velocities at different cross 
sections along the length of the perforated channel were computed by integrating the measured 
velocity profiles. 
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In Fig. ib experimental results are presented of the average longitudinal flow velocity 
distribution along a perforated channel for the case of a sealed end face and for various 
open areas of the side wall. The dashed line corresponds to a uniform distribution. The 
solid line was computed from Eq. (i) with boundary condition (2). With an increase of the 
open area of the side wall, the curves became more convex, which increases the degree of 
nonuniformity of the efflux velocity distribution along the channel length. 

In Fig. la are shown the results of investigating the flow distribution along the 
length of the perforated channel (@=0.08) with different permeabilities for the end face. 
The dashed line is computed according to Eqs. (4) and (ii). 

As can be seen from Fig. i, the model we have adopted on the basis of an energy prin- 
ciple well describes the one-dimensional flow in a perforated channel both with a sealed 
end face (which confirms the results of [5]) and also with a porous end face. Regarding the 
experimental points corresponding to the growth of the longitudinal velocity profile at 
the entrance, the fact that they are located primarily above the calculated curves, especi- 
ally at the center of the channel, denotes a somewhat larger nonuniformity of the radial 
efflux velocity distribution in comparison with one-dimensional flow. Just the same pattern 
appears in Fig. 2, which illustrates the coincidence of the experimental and computed curves 
(dashed lines) of the static pressure in one-dimensional flow. With an increase in the 
velocity profile at the entrance, the measured values of static pressure increase toward the 
channel end face in comparison with the one-dimensional model. At the last measured channel 
cross section (x=0.88) for O=0.44 the difference in the static pressure reaches 15%. A 
pressure increase in the downstream channel cross section leads to an increase of the radial 
velocity at the wall and, consequently, increases the nonuniformity of the efflux along the 
length of the channel. 

To explain the discrepancy in the experimental results, one must take into account the 
additional kinetic energy which is introduced into the channel by a flow with a developed 

turbulent profile in comparison with laminar flow. 

In [2] the energy equation for a stationary isothermal incompressible flow in a cylin- 
drical channel with porous walls is written in the form 

d~. (12 ) 

The first and second terms on the left side of expression (12) are the longitudinal and 
radial energy fluxes through the side walls of the channel, respectively. The right side 
is the dissipation term, which may be represented in the form 

u3 2~Rdx. (13) 

In Eq. (12) az and a2 a r e  a v e r a g e  c o r r e c t i o n  f a c t o r s :  

~R 2 
r  

. ~ i  = J 
u3d 

0 

~R2 ~R ~ 

~o ~ r. / ~ p U ~  U2 . 

0 0 

In  the  e x p r e s s i o n  f o r  a2,  t h e  q u a n t i t y  ( v 2 / 2 + P / p )  i s  i n s i d e  the  i n t e g r a l .  C o n s i d e r i n g  t h a t  
the static pressure P is practically constant across the channel cross section and that 
P/p >> v2/2, we may estimate that vi/2+P/0 =const and consequently that ~ =i. The quan- 
tity a~ for a developed turbulent profile does not equal i. Furthermore, considering the 

R du 
comments regarding a~ and ~2 and the fact of mass conservation v0= 2~ dx ' by performing 

the differentiation in Eq. (12) and taking (13) into account, we obtain 

3 ~  - -  ~2 _ _ 1 P~c  u + - 3  
2 u' u 2 -]- -~-  ~ 'u 3 -~ vov'ou ~- ~ ~ u  ---- O. (14) 

In this and below the subscript i on ~ will be omitted. 
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If ~ = i, then Eq. (14) takes a form corresponding to the one-dimensional case (with a 
laminar velocity profile): 

3--e 2 __o ~ ~ -3:0 (15) 
2 u'u~ + VoVoU + u + ~ u 

Computing from (14) Eq. (15) and p e r f o r m i n g  a s imple  t r a n s f o r m a t i o n ,  we o b t a i n  

Transforming to dimensionless form, we may write 

0 ( P o e - - P i n )  
OX pu2o/2 = 

! [(a- 1)u3] '. (16) 
u 

1 O (17)  
W OX [(a-1)Wa]" 

Integrating (17) we obtain a formula for the pressure distribution in a perforated 
cha nne l  f o r  t he  case  o f  a deve loped  v e l o c i t y  p r o f i l e  a t  the  e n t r a n c e  

(P-P01oo (P-P0)~ i !0__ 
9uo~2 9u~/2 W OX [(~z I) W 31 dX. 

p 

(18) 

The first term on the right side of Eq. (18) represents the pressure distribution in 
one-dimensional flow and is shown in Fig. 2 (solid line). The second term allows for the 
two-dimensionality of the flow. This integral was computed on the basis of the experimental 
points at each measured cross section of the perforated channel for a developed velocity 
profile at the channel entrance. In Fig. 2 the dashed curves are computed from Eq. (18) 
and satisfactorily describe the experimental data corresponding to a developed velocity 
profile at the channel entrance. 

The indicated analysis showed that the discovered discrepancy is mainly due to the 
neglect of two-dime~sional flow in Eq. (i). 

The error in the efflux velocity caused by the neglect of two-dimensional flow can be 
as large as 7.5%, while the error in the static pressure is up to 15%. 

With this limitation, the one-dimensional model may evidently be applied to a descrip- 
tion of the velocity distribution along the length of a perforated cylindrical channel for 
flows with an initial profile taking any possible form with locally stable flow from a 
laminar profile to the profile of fully developed turbulence. If a refinement is needed, 
one should make further use of Eq. (18) and the relation a = f(W) (Fig. 3). 

The experimental results in perforated channels with a porous end face are well 
described by the presented model with modified boundary conditions. This circumstance 
allows the model to be used in solving many practically important problems encountered in 
development of chemical reactors, ventilator systems, filters, etc. 

NOTATION 

u, local 10~gitudinal velocity, m/sec; u, longitudinal mean velocity over the cros~ 
section, m/sec; uo, mean velocity in the starting cross section of the channel, m/sec; UT, 
mean velocity on the permeable end face of the channel, m/sec; W, dimensionless mean longi- 
tudinal velocity; WT, dimensionless mean velocity on the permeable end face, W T = ~T/~o: Vo, 
radial velocity in the holes of the side channel surface, m/sec; P, static pressure in the 
channel, N/m2; Po, static pressure in the starting channel cross section, N/m2; Pa, medium 
pressure outside the channel, N/m2; P', pressure derivative along the longitudinal coordin- 
ate, N/m2.m; v~, radial velocity derivative along the longitudinal coordinate, m/sec; x, r, 
longitudinal and radial coordinates, m; L, R, channel length and radius, m; X, dimensionless 
longitudinal coordinate; X = x/L; W', W", appropriate derivatives along the dimensionless 
coordinate; ~, part of a free section of the side channel surface; ~T, part of a free sec- 
tion of the channel end face; ~, resistance coefficient at efflux through the side channel 
walls; ~T, resistance coefficient at efflux through the channel end face; X, friction coef- 
ficient for the flow moving in the solid wall channel; p, medium density, kg/m3; g = Vx/u , 
ratio of the projection of the suction velocity through the side surface onto the longitudi- 
nal channel axis to the mean longitudinal velocity in this channel cross section. Indices: 
~a= laminar profile; oc, developed turbulent inlet profile. 
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DIAGNOSIS OF RHEOLOGICAL PROPERTIES OF VISCOELASTIC-- 

PLASTIC MEDIA DURING THEIR FLOW IN PIPES 

R. M. Sattarov UDC 532.595.2+135 

A method is proposed for diagnosing the viscoelastic--plastic properties of a 
medium. 

Methods are available [1-3] for determining the relaxation properties of viscoelastic-- 
plastic media, but the models used in these papers are generally not justified. Because of 
the complexity of the internal structure of such media, this justification is very difficult. 
Therefore, methods permitting first a reliable diagnosis of the internal structure of such 
media and then a determination of their parameters are of important theoretical and practical 
interest for the analysis and optimization of technological processes related to the flow of 
viscoelastic--plastic media in pipes and channels. 

io Let us consider pipe flow of a viscoelastic--plastic medium whose rheological equa- 
tion is described by the following model: 

OT _~ ( OV ~ azV ) 
0 ~ - -  ~o = P  q T k  . 

Ot -&r atOr 

In writing this relation it is assumed that the velocity gradient and the stress are stabi- 
lized along the length. 

It should be noted that this model was employed in [4] to describe bituminous mineral 
conglomerates such as asphalt concretes and their components. 

The differential equations of motion for a viscoelastic--plastic medium in an elastic 
pipe have the form [i] 

0 02W OW 2% 1 (a_~z _i_00zP) ] 
at z + ( l  + 2 a ~ ) ~ +  2aW + R = - -  p OtOz 

PC z aW OP 
Oz at ' 

2a : 8p/pR 2. 

(i) 

The diagnosis of the viscoelastic--plastic properties of a medium is based on the solu- 
tion of the differential equations (i) or, under certain assumptions, on the solution of the 
first of these equations. By using calculated moments the dependence of certain relations 
of the moments type on parameters characterizing the viscoelastic properties of the medium 
can be written in analytic form, and a harmonic analysis can be made. 
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